Hybrid Approaches Tabu Learning Algorithm Based Neural Network
نویسندگان
چکیده
Tabu search is a global search algorithm which is popular in recent years [F. Glover, 1989, 1990, 1997]. The main principle of tabu search is that it has some memory of the states that has already been investigated and it does not revisit those states. It considers the set of all possible neighbor states and takes the best one, but it will also take the best move in the neighborhood which might be worse than the current move. The tabu search focuses greatly on expanding the global search area and avoiding the search of the same area. It can always get much better global solutions. The tabu search uses a tabu list to memorize the visited states and keep from recurrent search. Aspiration criterion is set to activate the “tabued state” in the tabu list around which some good global states may be found [D. Cvijovic, 1995]. In the past decade, there has been a growing interest in applying neural network to many areas of science and engineering, such as pattern identification and image management [Jianming Lu, 2007], control[Jian-Xin Xu, 2007] and optimize[Z. S. H. Chan, 2005], communication [Kung S Y, et al. 1998] and so on. Basically, neural network is the computing system characterized by the ability to learn from examples rather than having to be programmed in a conventional way as used in control engineering [K.J. Astrom, B, 1989]. The broad use of neural network in many areas derived from its ability of approximating nonlinear functions. In theory, it has been proved that a three-layered neural network can approximate unknown functions to any degree of desired accuracy [K. Funahashi.1989; and K. Hornik, 1989]. This chapter is focused on the tabu learning algorithm based on neural network in which an unknown function is approximated. The input of the network is given by the values of the function variables and the output is the estimation of the function. In mathematical terms, the objective is to find appropriate values for the weights of the net which approximate the function best. Gradient-based algorithms, especially the back propagation (BP) algorithm [L.M. Salchenberger, 1992] [P. Werbos, 1993] and its revised version [R. Parisi, 1996; and G. Zhou, 1998], are well known as a type of supervised learning for multilayered neural networks. The method of gradient descent is that a maximal "downhill" movement will eventually reach the minimum of the function surface over its parameter space by moving to the direction of the negative gradient.
منابع مشابه
Distribution Network Expansion Using Hybrid SA/TS Algorithm
Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing total cost of the objective function with technical constraints and reliability limits, make it a combinatorial problem which should be solved by optimization algorithms. This paper presents a new hybrid simulated annealing and tabu search algorithm for distribution network expan...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملNumerical solution of hybrid fuzzy differential equations by fuzzy neural network
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملNumerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network
In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...
متن کامل